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A method of second-order accuracy is described for integrating the equations of ideal 
compressible flow. The method is based on the integral conservation laws and is 
dissipative, so that it can be used across shocks. The heart of the method is a one-dimen- 
sional Lagrangean scheme that may be regarded as a second-order sequel to Godunov’s 
method. The second-order accuracy is achieved by taking the distributions of the state 
quantities inside a gas slab to be linear, rather than uniform as in Godunov’s method. 
The Lagrangean results are remapped with least-squares accuracy onto the desired Euler 
grid in a separate step. Several monotonicity algorithms are applied to ensure positivity, 
monotonicity and nonlinear stability. Higher dimensions are covered through time splitting. 
Numerical results for one-dimensional and two-dimensional flows are presented, de- 
monstrating the efficiency of the method. The paper concludes with a summary of the re- 
sults of the whole series “Towards the Ultimate Conservative Difference Scheme.” 

1. INTRODUCTION 

This paper describes a method of second-order accuracy for integrating the 
equations of ideal compressible flow (ICF). The method is based on the integral 
conservation laws and is dissipative, so that it can be used across shocks. The heart 
of the method is a one-dimensional Lagrangean scheme, the results of which are 
remapped onto the desired Euler grid in a separate step. Higher dimensions are 
covered through time splitting. 

The Lagrangean scheme may be regarded as a second-order sequel to Godunov’s 
[I] first-order Lagrangean scheme. As in the latter, the gas is divided into slabs, and 
the interaction of these slabs at their interfaces is considered in detail. Whereas 
in Godunov’s method the distribution of the state quantities inside a slab are taken 
to be uniform, in the present method these distributions are taken to be linear. The 
information contained in the slopes of the distributions makes it possible to attain 
second-order accuracy in the method. 

As in Godunov’s method, the interaction of slabs is evaluated essentially on the 
basis of the characteristic equations, with due care taken to account for the discon- 
tinuities in the interaction flow. The convective difference scheme, hidden in the 
Lagrangean scheme, for integrating the characteristic equations is a so-called up- 
stream-centered (upwind) scheme and has been discussed as “scheme II” in the pre- 
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vious paper [2] of this series. Remapping the Lagrangean results onto an Euler 
grid is done according to the upstream-centered “scheme III” from the same paper. 
A substantial improvement will still result if, in the Lagrangean step, scheme II 
is replaced by the more accurate scheme III. 

An accessory technique for preserving monotonicity during convection, also dis- 
cussed in [2], is easily incorporated in the method. It is applied in its crudest form 
[2, Eq. (66)] at the beginning of the Lagrangean step; a more sophisticated form 
[2, Eq. (74)] is applied in the remap step. Further refinement of the technique has 
been projected. 

Numerical experiments indicate that for solving two-dimensional flow problems, 
even on a coarse grid, the present second-order method is at least an order of magni- 
tude more efficient than Godunov’s method. An important reason for its efficiency 
is that the second-order method involves, per state quantity and per dimension, two 
independent data to describe the distribution in a slab (namely, the slab average 
and a representative slope value). This approach potentially has the effect of a mesh 
refinement of a factor two. 

In solving two-dimensional flow problems on a conventional computer, the present 
method is 15-20x slower than another state-of-the-art method, namely, Phoenical 
Shasta FCT [3, 91. The slight speed disadvantage seems to be amply offset by a greater 
accuracy. A detailed comparison with FCT and other algorithms may be published 
elsewhere [ 161. 

Its efficiency aside, the most pleasant property of the present method is the clear 
physical picture associated with it. The discretization of initial values yields “real” 
gas slabs, with fully specified internal distributions of state quantities. The two basic 
aspects of fluid dynamics, conservation and (nonlinear) wave propagation are properly 
accounted for. The meaning of the various steps in the scheme is always evident, so 
that formulating boundary conditions and adding extra physics (radiation, multi- 
fluid) are straightforward. See also [2, Section 71 for a summary of the properties 
of the underlying convective scheme. 

An all-purpose computer code for compressible gas dynamics, by the name of 
MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws), was 
written along the above lines by P. R. Woodward at Leiden Observatory. Various 
improvements are presently being installed by him at Lawrence Livermore Laboratory. 

The present paper is built up as follows. The physical, mathematical and numerical 
aspects of the Lagrangean scheme are treated in Section 2, while the extra features 
needed to incorporate the scheme into a monotonic multi-dimensional Eulerian 
method are presented in Section 3. Numerical results for shock tube flow and for 
supersonic flow in a windtunnel with a step, obtained with MUSCL and with 
Godunov’s method, are displayed and compared in Section 4. The conclusions from 
the present paper and, more generally, from the series “Towards the Ultimate Con- 
servative Difference Scheme” are given in Section 5, together with a list of desirable 
further developments. Finally, Appendix A adds some mathematical and numerical 
support to the earlier discussion of the interaction of gas slabs, while Appendix B 
discussesvarious ways to find arepresentative slope value for a distributioninside a slab. 
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2. THE LAGRANGEAN SCHEME 

2.1. The Lagrangean Flow Equations 

As the main building block of the method is a one-dimensional Lagrangean scheme, 
I shall first discuss the Lagrangean equations of ICF in one dimension. These read 

avjat - 2(x9.4)/~~ = 0, 

Cult2 + xa 2p/24 = F, 

2E/2t + i(xaup)/?[ = uF + G, 

2xpt = u. 

(1) 

(2) 

(3) 

(4) 

Here the independent variables are the time t and the mass coordinate 5; the latter is 
coupled to the gas and relates to the space coordinate x and the volume coordinate 
Xby 

d[ = V-lxa dx == V-ld(xar’/(a + 1)) = V-l dX. (5) 

For a: = 0, 1 or 2 we have plane, cylindrical or spherical symmetry, respectively. 
The state quantities V, U, E and p are, respectively, specific volume, velocity, 

specific total energy and pressure. Denoting the specific internal energy by e we have 

E = e + 2~“. (6) 

The equation of state will be written as 

P -p(V, e). (7) 

Where further specification is desired, the ideal gas law will be used : 

p = (y - 1) e/V. @Y) 

Here y represents the ratio of specific heats. Formulas into which this equation of 
state has been inserted will be distinguished from formulas valid for any equation of 
state by a “y” following the formula number. If the equation of state is more com- 
plicated, it may nevertheless be approximated by Eq. (87) using an effective value of 
y per gas slab and per time step. 

The quantities F and G represent sources of momentum and internal energy and may 
be functions of all independent and dependent variables, including those related to the 
other space dimensions. If specification is needed, dependence on V, U, E and x will 
be assumed. 

Eq. (2) may be written as 

2uj2t + 2(xtip)/25 = c~Vp/x + F, (9) 
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to make it look more like Eqs. (1) and (3). Eq. (4) may be written as 

ax/at = x”u, (10) 

to bring out that Eq. (1) derives from it through differentiation with respect to 5. 
An important state quantity is the Lagrangean sound speed C (mass in column of 

unit cross-section travelled per unit time), defined by 

c2 E -(ap/aVhdiabatic 

and related to the spatial sound speed c by 

(12) 

c = c/v. (13) 
For an ideal gas we have 

c2 = 3/p/v. (14Y) 

Combining Eqs. (l)-(3) with the definition of C leads us to the characteristic 
equations 

apjat + C2 aV/at = G(ap/&), , (15) 

(au/at - c-l apjat) - xqaujaf - c-l aplan 
= auVC/x + F - C-1G(3p/ae)v, (18) 

(au/at + c-12ppjat) + ~qau/ag -I- c-lap/at) 
= -~vC/x + F + C-lG(ap/&), . (19) 

The quantity (ap/i3e)v, evaluated on the basis of the ideal gas law, becomes 

tWW. = (Y - 1)/v. (17Y) 

Introducing the Riemann invariants J- and J f, and the entropy S (apart from an 
integrating factor) we may write Eqs. (18), (19) and (15) as 

dJ- = du - C-l dp = {(YU VC/X + F - C-lG(ap/ae),} dt 
on a trajectory with d=$/dt = --XT, (20) 

dJ+ = du + C-l dp = {-EUVC/X f F + C-lG(ap,Qe),} dt 
on a trajectory with dfldt = +xT, (21) 

dS - dp + C2 dV = G(i3p/i?e), dt 
on a trajectory with d[/dt = 0. (22) 

The trajectories on which Eqs. (20) and (21) hold will be called the r- and r+ charac- 
teristics, respectively; the trajectory on which Eq. (22) holds is a streamline. Using 
the ideal gas law, Eq. (22) can be integrated to 

(PV% = (PY~)~~ exp /Jtl (G/e) dt’/ on a streamline. (23~) 
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Across a shock wave, none of the flow equations in differential form holds. From 
the integral form of the conservation laws (I), (9) and (3) the following jump equations 
can be derived: 

iw(v* - V) + (u* - u) = 0, (24) 
*ww(u* - 4 - cp* -P> = 0, (25) 

*W(E* - E) - (u*p* - up) = 0. (26) 

Post-shock values are indicated by an asterisk; the Lagrangean shock speed is called 
f W, where W is positive and the sign indicates the direction of propagation. This 
shock speed, like the Lagrangean sound speed, is defined as the mass flux through the 
wave in a column of unit cross-section, and does not include the geometrical factor 
xa. To find the spatial speed with respect to the gas, W must be multiplied by the pre- 
shock specific volume I’. 

In view of numerical applications it is useful to derive an expression for Win which 
only one post-shock value appears. A practical choice is 

w = CD. + icy + 1)lc%)KP* - P)/P11’2, P* >P. (3lY) 

For a centered rarefaction wave connecting two uniform and constant states we 
have 

(u* - u) F {2/(y - l)}(V*c* - VC) = 0 

across a wave moving to the right/left; furthermore, 

(32~) 

p*Jf*y xpv”. (33Y) 

From these relations one may obtain pseudo-jump equations similar to (24)-(26); 
however, the wave speeds appearing in those equations are all different. We shall only 
use the equivalent of Eq. (25); for a rarefaction fan we arrive at the effective 
Lagrangean speed 

If the states connected by the wave are not uniform or constant, Eqs. (32y)-(34~) are 
only meaningful in computing the effective wave speed in the divergence center of the 
rarefaction fan. 

From the symmetric appearance of pre- and post-wave states in the (pseudo) jump 
equations it follows, for sufficiently weak waves, that 

w = HC + c*) + o{(c* _ qz>, (35) 

regardless of the type of wave and the equation of state. For infinitesimally weak 
waves the wave speed W reduces, of course, to the sound speed C. It follows from 
Eq. (25) that 

I dp*ldu* I(w) = C. (38) 
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2.2. Discretizution 
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The gas is divided into slabs that need not have equal thickness 05. Values taken at 
the interfaces will bear an integer index; values taken in the middle of a slab and 
values averaged over a slab (the latter distinguished by an overhead bar) will bear a 
half-integer index. In order to suppress the time index, initial values and values 
averaged over a time step (the latter distinguished by angled brackets around them) 
are denoted by writing the space index as a superscript. The complete notation has 
been compiled in Table I. 

TABLE 1 

Notation Used in the Grid 

Symbol Definition 
- 
mass, Euler, volume coordinate of zone boundary 
$(f, + fr+l), mass-averaged mass coordinate of zone (.$, , fi+J 
*(XC + X6+1), volume-averaged volume coocdinate of zone (Xi . X,,,) 
fi,l - fi , x,+1 - x; 
Initial time level 
I” + At, final time level 
Mass-averaged value of Q in zone (fL , fLcI) at to, t1 
Volume-averaged value of Q in zone (x, , xi+,) at P, t1 
Value of Q at the boundary 5, at to, t’ 
Average value of Q at the boundary f, during time step 
Average value of & in zone (fi , fi+J during time step 
!2i+1h - Qi_,,2, iJc+1/z - Qwa 
Mass-averaged value of aQ/af in zone (fi, fi+r) at to 
Volume-averaged value of aQ/aX in zone (Xi , Xi+,) at to 

In each slab we shall, at the initial level to of a time step, approximate the true 
initial-value distributions of the conserved quantities V, u and E by linear distributions 
with the correct slab integral. For instance, the distribution of V is approximated by 

{ Vt”, mpprox = 6+1/z i- a+1 :2 V~i+1124>(5 - 4i+1A ‘fi < 4 < &,l 9 (39) 

in which the slab average is defined by 

vi,,;, 7 (~i.+1125)-1 /$I”’ vt”, 0 & 

and the average slope as 

--~ 
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The above way of finding a representative slope value will be called interface differen- 
cing. This must however be regarded as a temporary substite for the more accurate 
least-squares fitting, which is used in the Eulerian remap step (see Sec. 3.2). To date, 
a practical way of updating a slope with least-squares accuracy in the Lagrangean 
step has not yet been found. The pros and cons of various ways of defining the slopes 
are discussed in Appendix B with special regard to the equations of ICF; see also 
[2, Sec. 21. 

The six quantities F, 17, E, dV, & and dE are the only data on the true initial 
values of V, u and E inside a slab that are retained and, in consequence, are updated in 
the next time step. In addition, the Euler coordinate x or the volume coordinate X of 
each slab boundary is integrated along. From Eqs. (5) and (40) it follows that 

Ai+&’ = K+mAi+d. (42) 

A linear distribution of E is not very useful in itself, except in remapping total 
energy onto an Eulerian grid (see Sec. 3.2). In the Lagrangean scheme it is more 
convenient to work with a linear pressure distribution instead. Using the available 
discrete information, the average pressure and pressure gradient may be recovered 
within O{(A5)4} and O{(A&‘}, respectively. We first obtain 

(43) 

(44) 

(45Y) 

However, the dependence of Z and j!, as approximated above, on dV, du and iiE in 
practice is a nuisance. For instance, it makes the otherwise explicit monotonicity 
algorithm of Sec. 3.3 implicit for the pressure. We shall therefore make no use of 
Eqs. (43) and (46~) but, instead, employ the sufficiently accurate formulas 

Note that the slope values are independent of the slab averages; they can not be 
derived from the latter and must be stored separately. This is one of the features that 
distinguishes the present scheme from common finite-difference schemes. The dif- 
ference with Godunov’s scheme is that, in the latter, all slopes are taken to be zero. 
This accounts for the first-order accuracy of Godunov’s scheme; see also [2, Sec. 21. 
A short discussion of Godunov’s method can be found, for instance, in [19]. 
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Exact formulas for updating the slab averages of the conserved quantities result 
from integrating the conservation laws (l), (9), (3) over a slab and a time step: 

p+1/2 = jJ. 
2+1/2 - &~(Kx.uP)i+l - W@P>i) + (w%+1/2 + (&+1,2)4 (51) 

these hold regardless of the presence of discontinuities in the slab. As usual in control- 
volume schemes, for updating V, 27 and E we need to estimate the time averages (u), 
(p) and (x) of velocity, pressure and Euler coordinate at each interface with first- 
order accuracy, that is, within a margin of O{(rlt)2}.Time averages of products of these 
quantities may be approximated by products of their time averages. 

For updating dV, du and ap we must estimate, with the same accuracy, interface 
values of V, u and p at the final time level t1 and take their differences; for example: 

di+l/zv = I/i+1 - I/i (51.5) 

The particular manner of computing the flow at the interfaces is another distinguishing 
property of the present integration scheme and will be discussed in the next section. 

The Euler coordinate of an interface is updated according to 

xi =xi+(U)iAt, (52) 

from which follows the volume coordinate Xi. It is seen from Eq. (10) that updating V 
according to 

p;;i+V = AW~X/A~+~ ,2[ (53) 

is equivalent to using Eq. (49). In practice, Eq. (53) is preferred to Eq. (49). 

2.3. Interaction of Slabs 

After discretization the initial-value distributions in the slabs (tip1 , Si) and (ti , li+l) 
generally meet, at Ei , in a discontinuity. Denoting values at the left and the right side 
of the interface by the indices t and i, , respectively, we have 

From these follow all other state quantities needed, in particular Ci* . 
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The discontinuity will exist only for a time-interval with zero measure, so that the 
above initial values will not contribute to the time averages (u)~, (p)$ and (x)~ 
needed in our scheme. In determining what happens at fi during the next step in time 
we must start with resolving the initial discontinuity. Once resolved, the state at & 
will continue to change, because the interacting slabs generally are not uniform and 
because geometric effects and sources may enter. Knowledge only of the first time 
derivatives of velocity, pressure and specific volume, arising at li immediately after 
the resolution, will enable us to calculate the evolution of all state quantities at the 
interface within the desired margin of U{(dt)2}. 

As is well known, an arbitrary fluid discontinuity will break up into a pair of waves, 
one running to the left and one running to the right. Each of these may be a shock 
wave or a rarefaction wave. In between the waves, velocity and pressure are con- 
tinuous; the specific volume generally is still discontinuous at the interface. 

We may describe the state resulting immediately after resolution of the initial dis- 
continuity with aid of the equations for jumps and wave speeds given in Section 2.1. 
By virtue of Eq. (25) we have 

wj-(u’ - uj-) + (pi* -pi-) = 0, (57) 

Wj+(U,* - Uj+) - (pz* - pi+) = 0. (58) 

Here UT and pf are the resulting values of u and p in ti , while Wi- and Wi+ are the 
absolute values of the speeds of the waves travelling into the slabs (timI , [J and (Ei , 
.$i+l), respectively. Eliminating ut from these equations yields 

p” = ( Wi+pi& + Wi-pi+ - Wi- Wi+(Ui+ - U<-)}/( Wi& + Wi+)* (59) 

Since Wi- and Wi+ can be expressed, according to Eqs. (31~) and (34y), in terms ofpt 
and the known quantities pir and Ci, , the resolved pressure value is, in principle, 
determined. In practice, pf is obtained through an iterative procedure, using 

p?(l) = {(Ci+Pi- + G-Pi, - ci-G+(Ui+ - %N(Ci- + Gd (60) 

as a starting value. 
After satisfactory convergence of the pressure values, UT is determined from 

ui* = {W&l- + wj+uj+ - (pi+ - pi-)}/( Wj- + Wi+)f (61) 

an equation that results when pf is eliminated from Eqs. (57) and (58). The values 
I’:- and V& of the specific volume on the left and the right side of the contact dis- 
continuity, resulting at 4( immediately after resolution of the initial discontinuity, are 
obtained with aid of either Eq. (24) or Eq. (33y), depending on the kind of wave 
appearing on either side. The resolved state is then completely determined. 

Godunov’s own iterative procedure for obtaining p? brings the pressure a factor 
O{(Ui+ - uiJ, (pi+ -pi-)} closer to the exact value, per iteration cycle. I have 
abandoned Godunov’s procedure for a more efficient one, advancing a factor 
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O{(Q+ - uiJ2, (pi+ -pi-)“} in accuracy per cycle. Both procedures are explained 
further in Appendix A on the basis of pres$ure-versus-velocity diagrams. 

It must be understood that, when calculating smooth flow in a uniform grid with 
the present method, the size of the discontinuities is of the order 0{(4[)3}, as opposed 
to O(dt) in Godunov’s method. The accuracy required at the interfaces is only 
O{(At)2}. In consequence, even PT’l’, with an error O{(Cz - C,)[(p+ - p-), 
(u+ - =>I> - ~WY? is more than adequate to serve as p$ anywhere in the smooth 
part of theflow. 

The corresponding value of r.4: is 

u?(l) = {C~&U~& -1 ci+u+ - (pi+ - p,-)}/(C,& + C,,), z 

while V&(l) follows from 

(f-3 

&C,*( v:p - vi*) + (zp - z&*) = 0. (63) 

Using Eqs. (60), (62) and (63) implies interaction of the slabs through linear waves, 
since the difference between Wi* and Ci* is ignored. This approximation obviously 
breaks down at interfaces lying inside a shock structure. The penalty for using a bad 
estimate of UT and p: in such places is the enhancement of numerical oscillations in 
the post-shock region, an effect also known for Godunov’s method. In the MUSCL 
code, therefore, the iterations are called for if pi *(l) differs more than 1 o/0 from pihl and 
are continued until pfcn’ does not differ more than 1.5 oh from pT’“-l’; this appears to 
be satisfactory. In the exploding-diaphragm calculation of Sec. 4, the extra iteration. 
in selected points accounted for 2-3 y0 of the computing time of the Lagrangean step. 

In view of the low accuracy required beyond the linear-interaction formulas it even 
seems wasteful to use, in the iterations, the exact wave speed formulas (31~) and (347). 
We may as well take one approximate formula that does not distinguish between the 
shock and rarefaction cases, such as Eq. (35). This possibility is presently in study. 
Note that using such approximate physics does not mean that the scheme for updating 
slab averages can not distinguish between a shock wave and a rarefaction wave. As 
long as the scheme is consistent, stable, conservative and irreversible in time, it will 
raise the entropy in a slab where necessary. 

The time derivatives (aujat)~, (Sp/at)F and (aV/at)~k of the resolved state at li are 
determined essentially from the characteristic equations (18), (19) and (15). At inter- 
faces where one or more extra iterations were needed for the resolution, we use the 
following version of Eqs. (18) and (19), valid at a discontinuity: 

(64) 
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(65) 

These equations, like Eq. (35), distinguish between C and W, but not between a shock 
wave and a rarefaction wave. They were derived in [17]. Eq. (15), applied to the 
resolved state on either side of ti , reads: 

In Eqs, (64)-(66) the space derivatives on either side of [i , indicated by the subscript 
i+ , numerically are equal to the average space derivatives in the slabs that meet in fi . 
This is consistent with the piecewise-linear representation of initial values. 

At interfaces where no extra iterations were used for the resolution, the differences 
between C and Wand between quantities with and without asterisk may be ignored in 
the coefficients and source terms in Eqs. (64)-(66). 

The time derivatives given by Eqs. (64)-(66) can be used to describe the evolution of 
V, u and p at ti until the waves from (i-1 and/or [i+l arrive at fi . This implies the 
usual Courant condition on the time step. 

Using Eqs. (57), (58), (64) and (65) to calculate the flow at an interface guarantees 
that signals coming from the left-hand and from the right-hand side are properly 
separated. It is easily checked that the slab averages of the Riemann invariants J- and 
J+- are updated by the Lagrangean scheme according to a second-order upstream- 
centered (upwind) difference formula resembling Fromm’s [l 1] scheme for integrating 
the convection equation. Convective schemes of this type were discussed in [2]. 

2.4. Details of the Lagrangean Scheme 

In each slab at to we are given the quantities r, U, i?, dV, 2~ and dE (if the last 
step was an Eulerian remap) or ap (if the last step was Lagrangean). At the interfaces 
we are given .$ (constant during a Lagrangean step) and x; from the latter we obtain X 
(see Eq. (5)). In each slab we further obtain j and (if not already given) ap according 
to Eqs. (47), (48), (44) and (45~). While calculating p we may locally check the 
Lagrangean Courant condition on dt, 

At < @lx)/?, (67) 

or, if c itself is not needed for other reasons, 

Y(Y - ww2 < w2/c w3Y) 

581/32/1-S 
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avoiding a square-root computation in each slab (see Eqs. (12), (13)). After a safe 
value of d t has been established for the whole grid, which may be multi-dimensional, 
we may proceed with steps that are exclusively one-dimensional. 

At each interface we first compute the values of V* , U& and pi according to Eqs. 
(54)-(56), from which follow the values of C* , (+/ae)i , F* and G* . Next, the dis- 
continuities at the interfaces are resolved as described in Sec. 2.3, yielding values of 
u*, p*, W, and Vz . From these, if necessary, are derived CT, (i?p/iZ?e)$, e and Gz . 
We now know all quantities occurring in Eqs. (64)-(66) except (h/at)*, (ap/at)* and 
(aL’/kV)~ . Subtracting Eq. (64) from Eq. (65) eliminates (&/at)*, yielding (i3p/at)*. 
Adding up CT times Eq. (64) and CZ times Eq. (65) eliminates (ap/at)*, yielding 
(h/at)*. Inserting (i3p/at)* into Eq. (66) then yields (aL’j8t)~ . 

The scheme then proceeds with a half step in time, defined by the following equa- 
tions: 

(v)i* = v2 + g(av/at),?* dt + 0{(dt)2}, (69) 

(U)i = UT + ~@/a$ dt + 0{(dt)2}, (70) 

<P>i = p” + ~(~p/Wf At + 0{(42}, (71) 

(X)i = xi + gu: dt + 0{(dt)2), (72) 

(X’?i = <x>y + oNdt>2>, (73) 

<n+1,2 = k -cc 06, + (O(i+1)-1 + oKm2, (&)21, (74) 

(@i+l/2 = H<u>, + (Gi+d + ONW, (&>21, (75) 

< F>i+l/2 = 3(( P>i + (P)i+d + O{CA t)2, Cr15‘>“>, (76) 

<%+I/2 = H<X>i + Wi+d + oK~t>2, (&)21, (77) 

<h+,,, = F(( bi+m 3 (G+I/z 7 ( P>i+1/2 > C&+1/2) + WW2, (&12), (78) 

<%+1,2 = G(( P)i+l/2 3 (U)~+I/Z > ( P)~+I/z 3 (%+1,2) + out)2, @O”>. (79) 

The full time step, modeled after Eqs. (50)-(53), can now be carried out with the proper 
accuracy : 

Xi = Xi + (U)i dt + O{(dt)3}9 (80) 

xi = (xi)u+l/(oi + l), (81) 

p+w = di+v2x/di+1,2.$, (82) 

g+w zxz &+1,2 - & Edi+li2((xa>< P>) - < P>t+U2 di+Ih(XE)l 

+ <F)i+llB dt + o{(dt)37 dt(d5>2>, (83) 
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vii = vz + (av/at)i*, At + O{(Llt)2}, (85) 

22 = u: + (aujat)~ Lit + 0{(A4t)2}, (86) 

pi = p; + (ap/at); At + O{(h)2}, 

p+iflpjT = p+w- - vi+ + O{(42&}, 

di+vu = ui+1 - ui + 0{(At)” Of}, 

&+vp = pi+1 - pi + 0{(Lq2 Of}. 

(87) 

(88) 

(89) 

(90) 

If the Lagrangean step is followed by an Eulerian remap, ap must be converted back 
into dE using Eqs. (47) and (48) and, inversely, Eqs. (45~) and (44).- 

The term in Eq. (83) between square brackets is identical to (~a)~+~,~ di+112(p) 
(compare Eq. (2)), with (p)i+1i2 defined as &((Y)~ + (x~)~+~), but avoids introducing 
the latter quantity. The time averages (x)~ and (x”)~ may be calculated up to O((d t)3}, 
using (a2x/at2), = (au/at): . The calculation of the time- and space-averaged source 
terms may also be varied. The steps listed above just form the bare-minimum scheme; 
in any general- or special-purpose computer code extra measures must be built in for 
guaranteeing positivity of directly computed quantities and of derived quantities. The 
most important ones are discussed in Sec. 3.3 on monotonicity algorithms. 

3. ACCESSORY TECHNIQUES 

3.1. Formulation of Boundary Conditions 

The boundary conditions to be used with the Lagrangean scheme in solving a 
particular flow problem are, in principle, the same as those needed in an analytic 
treatment. For instance, at a left-hand boundary 4,) equation (57) for the jumps 
across the wave moving to the left and the corresponding equation (65) relating 
(au/at): and (L3p/at)$ drop out. These have to be replaced by two other equations; in a 
piston problem, u$ and (au/at)t would be given. 

Simple boundary conditions such as the reflection and the free-stream conditions 
may be simulated in the familiar way, namely, by adding across the boundary a slab 
(,$-.I , &,), the structure of which is a priori given or completely derived from the 
structure of slab (4, , [,). 

At the origin, in cylindrical or spherical symmetry, we must have z+,+ = u$ = 
(ih/iA*), = 0, while (u/x),+ and (u*/x),+ turn into (au/ax),+ and (au/ax);+, respec- 
tively. The requirement that u,,+ be zero implies that a,,,~ must always be taken equal 
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to 2u,,g . Since the initial derivatives with respect to 5‘ are assumed to be finite down 
to the origin, the derivatives with respect to x vanish, and Eq. (64) boils down to 

3.2. Eulerian Remapping 

In the present method the Eulerian equations of ICF are treated by first integrating 
the Lagrangean equations and then remapping the Lagrangean results onto the Euler 
grid (fixed or moving). This contrasts with the Euler version of Godunov’s method [4], 
which directly integrates the Euler equations. The use of a completely separate remap 
step makes the method more flexible and is indispensible with regard to any multi- 
fluid extension. Use of a separate remap step originated with the group of W.F. Noh 
at Livermore, and has been applied to several codes of the Lawrence Livermore 
Laboratory. 

The procedure of remapping is illustrated in Fig. 1. At the beginning of the 
Lagrangean step, the Lagrangean and Eulerian zones coincide (Fig. la); upon 
completion of the Lagrangean step they no longer do. For practical reasons we restrict 
the size of the time step such that no gas will cross more than one Eulerian zone 
boundary. In the present example the Eulerian boundaries are taken to be fixed, 
although in general they may be chosen to move according to some prescription. 

FIG. 1. Movement of a Lagrangean zone through a fixed Eulerian grid. Both mass and volume 
coordinates are indicated. (a) Initial coincidence of Lagrangean zone (& , ti+J and Euierian zone 
(xi, xi+&. (b) After a Lagrangean time step the Lagrangean zone has exploded and contains the 
Eulerian zone. (c) The Lagrangean zone has moved to the right. (d) The Lagrangean zone has im- 
ploded and is contained in the Eulerian zone. 

At the end of the Lagrangean step, an Eulerian zone may contain matter from one, 
two or three original Langrangean zones (Figs. lb, lc and Id). In order to determine 
the correct structure some logic must be built into the procedure. This logic precisely 
is the stumbleblock in formulating ordinary finite-difference schemes that are upstream 
centered; see Van Leer [S]. 

New Lagrangean zones are now defined, coinciding again with the Eulerian zones. 
The new mass coordinates of the Eulerian zone boundaries are computed from the 
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known volume coordinates, using the updated distributions V(P, <) in the original 
Lagrangean zones. For example, in the (most common) case of Fig. lc, the new mass 
coordinate e+l corresponding to the fixed volume coordinate X,+l may be found from 
the equation 

or 
s 

fi+1 
{ P+l/2 + (~+‘W/LI~+~,~~)(~ - fi,1,2)} df = Xi+’ - X,+l (92) 

p+1 

(.$i+l - 5”“)[ vi+112 + & d~+wJ{ 1 - (&+r - ~+‘)/4+,,,~}] = xi+1 - X,+l . (93) 

The distributions of the conserved quantities resulting in the Eulerian zones in the 
cases of Figs. lc and Id are not linear in 5. Before the next Lagrangean step can be 
taken these must be replaced by linear distributions. This will be done through Zeast- 
squares fitting. A replacement distribution thus must share its zero-th moment (that 
is, the slab integral) and its first moment (proportional to the slope) with the replaced 
distribution. 

I I I I I I I I 

‘i ‘L xR ‘i+l ’ ‘i ‘L ‘R ‘i+l 

FIG. 2. A typical part of a distribution that must be remapped. It is defined in the subinterval 
(& , ta) of (g”, [*+I), where & and/or Ia may of course coincide with 5” and/or p+l. Both mass and 
volume coordinates are indicated. (a) The distribution is linear between 6~ and tR, as for all state 
quantities Q. (b) The distribution is constant between 5s and [R ; this is true for the difference $Q 
of the state quantities in the r) direction orthogonal to the sweep direction (see Sec. 3.4). 

If a distribution Q(t) is linear in the subinterval (& , fR) of zone (e, e+l), as in 
Fig. 2a, the contributions from that interval to the zone integral and the first moment 
of Q are given by 

s ERQdt 
EL 

HQL + Q&R - EL>, (94) 

DAQL + QR) - {(QR - QLMR - ~L)H&(~L + SR) - P"}] 

x i{(fR - p+vy - (fL - p+w)2} 

+ ((QR - QLMER - 5~)). +{(CR - P1j2j3 - (TL - Si+112)3). 

(95) 

581/32/I-9 



116 BRAM VAN LEER 

With aid of these formulas the first two moments of any piecewise linear distribution 
on (e, e+> can be computed. The quantity in Eq. (94) enters the slab average after 
division by di+V2t; the quantity in Eq. (95) enters the slope value after division by 
{(di+1/2f)3/12}. Thus, new values for Vand dV, U and du, E and iiE are computed for 
the Eulerian zones, which now are sufficiently defined to serve as the Lagrangean 
zones for the next time step. 

The above remapping procedure involves the solution of the quadratic equation (93) 
for the mass &+l - e+l convected across X,+l in the case of Fig. 10. This costly 
operation may be avoided if we describe the mass distribution in the original 
Lagrangean zones in terms of density versus volume-coordinate rather than specific 
volume versus mass-coordinate. These functions p(tl, X) and V(P, [) are related in 
average value by 

s 

XL+1 
-i+ljZ = 
P p dx/Ai+lPx = Ai+l,2~/Ai+li2X = l/ Vi+lP, (96) 

XI 

and in first moment by 

(X - Ti+lj2) p(t’, X) dX/{&(Ai’-‘/2X)2j 

.c 

ei+1 
=z (X - i+8+li2) d([ - ~i+l,2)/(~(A’+1~2X)2) 

fd 

s 
ei+1 

=--- (8 - L/2) Vt’, 0 4Wzi(Ai+1’2x)2~ 
Ei 

E -~+1/2~(A~+~,~E/Ai+112X)2 

= .3+1/2~/(~+1/2)2~ (97) 

Without loss of information we may therefore exchange a linear distribution V(t), 
defined by V and dV, for a linear distribution p(X), defined by p” and 0”~. Note that a 
tilde refers to an integration over X, just as an bar refers to an integration over 4. 

The mass convected across X,+l now follows directly from 

+ (~i+1Pp/Ai+l/2X)(X - gi+lP)) dX 

= (Xi+1 - xi+l)[p”i+l/2 + $ ~~+lPp(l - (xi+1 - x,+,)/Ai+~/2x}]~ (98) 

The density p is remapped with respect to X just as other quantities are remapped with 
respect to [, yielding the updated values of p” and dp in the Eulerian zones. These are 



SEQUEL TO GODUNOV’S METHOD 117 

converted into Band dV, in preparation for the next Lagrangean step. The remapping 
of u and E with respect to 6 is not affected by the transformation of V into p. 

The restriction on d t for the composite scheme is, for each zone, 

dt < min(dx/i U 1 , Ox/Z) + O{(n@, d[dt); (99) 

note that this is less stringent than the usual condition for a fully Eulerian scheme: 

At < Ax/(1 u / + T) + c?{(A<)~, At At:. 

An additional condition is needed to prevent zone-tangling: 

-2~ At < Ax + O{A.f(At)2}. (100.5) 

This need not imply a restriction of At, since the monotonicity algorithms of Sec. 3.3 
can limit the value of 2~ to the degree desired. Use of a monotonicity algorithm is 
necessary anyway, in order to prevent negative or oscillating values of zone averages. 

A word remains to be said about evaluating mass coordinates. In actually 
programming the remap routine, fi need not be given its accumulative value 
C;;;n E&2 A k+l,2X but may be locally set equal to zero. It is not necessary to create 
special arrays of values of .$i or even Ai+,,,t. 

In the one-dimensional shock tube test of Sec. 4 the full (monotonic) remap step 
took about a factor 0.55 as much computing time as the full (monotonic) Lagrangean 
step. In the two-dimensional case the factor goes up to 0.75 because the number of 
state quantities that must be remapped per dimension goes up (see Sec. 3.4). 

3.3. Monotonicity Algorithms 

The monotonicity algorithms presented in the previous installment [2] for a single 
linear convection equation also render good service for the equations of ICF. The 
crudest algorithm 12, Eq. (66)] is suited for the Lagrangean scheme, while the more 
refined algorithm [2, Eq. (74)] is particularly useful in the Eulerian remap step. 

According to [2, Eq. (66)], the onset of numerical oscillations in a monotonic 
sequence of slab-averages can be prevented by putting a limit to the slope of the 
distribution inside each slab. This limiting must be so strong that the linear distribu- 
tion will not take values beyond the average values in the neighboring slabs. If the 
slab average is an extremum with respect to the neighboring averages, the slope must 
be set equal to zero. Reduction to zero is also dictated if the sign of the slope is not the 
same as the sign of the finite-difference slope that follows from the neighboring slab 
averages. The three different rules of limiting are illustrated in Fig. 3, copied from [2]. 
They also guarantee the preservation of positivity of the distributions. 

The algebraic form of the algorithm, hence, Eq. (66) of [2], is 

(4~i,,~2c?>nmlcl = 
I 

min{:! I 42 1, I &+u~C? I, 2 I 4+&l! !> sgn &+112Q 
if sgn AiQ = sgn Ai+,Q = sgn di+l,z~, (101) 

0 otherwise. 

It must be applied to I’, u and p at the beginning of the Lagrangean step. 
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-1 0 1 E/At 2 -1 0 1 2 -1 0 1 2 

FIG. 3. The monotonicity condition (100) on the slopes at the beginning of a Lagrangean step. 
(1) The slope of the linear distribution (solid line) in the zone (& , tI) is reduced (heavy solid line) 
so that the values in this zone do not go beyond the average levels (dotted line) in the adjacent zones. 
(2) If the mesh average reaches an extremum, the slope is reduced to zero. (3) If the slope does not 
agree with the trend in the mesh averages, it is also reduced to zero. 

The above limiting technique will largely suppress numerical oscillations, although 
the nonlinearity of slab interactions makes it impossible to fully guarantee mono- 
tonicity, especially for the largest allowed time steps. In order to achieve stronger 
limiting the factors 2 occurring in Eq. (101) may be reduced; however, not beyond 
1 + O(flQ), lest the scheme lose its second-order accuracy. In particular, these factors 
may be made a decreasing function of the local Lagrangean Courant number (T = 
(dt/dx) c, thus providing stronger limiting in regions where (T approaches unity and 
the numerical damping in the scheme vanishes with 1 - 0. (For small Courant 
numbers no reduction is needed: although the numerical damping per time step 
vanishes with u, damping per unit time does not). Note that any oscillations still 
created in the Lagrangean step will be partly damped through the limiting in the 
Eulerian remap step. 

If the factors 2 are replaced by 0, the slopes will always be set equal to zero and the 
Lagrangean scheme reduces to Godunov’s scheme. This may be a convenient option 

FIG. 4. The monotonicity condition (102) on the slopes at the beginning of an Eulerian remap 
step. Both mass and volume coordinates are indicated. The slope of the linear distribution (solid 
line) in the Lagrangean zone (fi, li+J is reduced such that the average value (dotted line) in the 
part of the zone that has crossed/not crossed the Eulerian zone boundary X<+, does not overshoot/ 
undershoot the average value in the adjacent Lagrangean zone (dotted line). The adjusted distribu- 
tion and corresponding average levels in the zone parts are indicated by heavy solid and heavy dotted 
lines, respectively. 
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to have in a computer program, when comparisons with a first-order method have to 
be made. 

The algorithm [2, Eq. (74)] does allow the values of a state quantity inside some 
slab to go beyond the range spanned by the neighboring-slab averages. But the average 
value in the part of the slab that, in the next convection step, will cross a zone bound- 
ary, as well as the average value in the part that will stay behind, must remain within 
that range. This condition can be met, again, by limiting the slope of the distribution 
of the quantity, as shown in Fig. 4. Note that positivity is guaranteed only for the 
zone averages. 

Obviously, this milder kind of limiting is applied most easily if the amount of 
material to be convected across the zone boundaries is known beforehand, as in the 
case of a constant convection speed [2]. Fortunately, this condition is met, too, in the 
Eulerian remap step. The limiting formula for the case of the new Eulerian slab 

averages are computed. 
A complication would arise if we use Eq. (102) to adjust di+1/2V. Changing this 

quantity means changing the mass distribution in the convected Lagrangean zone and, 
therefore, changing the mass fraction of the zone that has crossed an Eulerian bound- 
ary. The mass fraction, however, feeds back into the monotonicity algorithm (102). 
This complication disappears if, as advised in Sec. 3.2, we redistribute the density over 
the volume coordinate, rather than the specific volume over the mass coordinate. 

In the case of Fig. 4, the monotonicity condition for d”i+l/*p namely does not 
involve the mass fraction vi+l but the volume fractionf;,,, = (Xi+l - Xi+l)/Ai+l’*X, 
which is already known and will not be affected by a change in p(X). We may directly 
apply the algorithm (102), with q~ replaced byfand overhead bars by tildes, to zit1/2p, 
whereupon yi+l is determined with aid of Eq. (98). Then the application of (102) to 
di*lj*u and di+l12E follows as usual. 

As mentioned in [2], monotonicity algorithms like (101) and (102) will clip real 
peaks to the same degree as a first-order method would do. This happens in particular 
for 

V, p and E at reflecting boundaries, where these quantities always have an extre- 
mum. The algorithms may be improved by including extra information on what the 
distributions looked like prior to their replacement by linear distributions. 

For example, consider a purely Lagrangean calculation. At the end of each step we 
know the interface values of V, u and p, as computed in Eqs. (85)-(87). We may save 
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FIG. 5. The monotonicity condition (104) on the slopes in a purely Lagrangean calculation. 
(al) The actual initial values represent a shock inside slab (5, , 5,). (a2) The shock structure is re- 
placed by a linear distribution, which subsequently is monotonized (heavy line). The condition is 
that the distribution inside (&, , tl) must not take values outside the range indicated by the actual 
interface values at &, and EI (tack marks). Since those values are the same as the average values in the 
adjacent slabs, we might as well have used condition (101). Note that the slope determined by inter- 
face differencing is the same regardless how far the shock has advanced in the zone. After monotoni- 
zation, however, the slope does respond to the shock advancement. (bl) The actual initial values 
have a peak inside slab (4,) ~,). (b2) The peaked distribution is replaced by a linear one, which 
subsequently is monotonized (heavy line). The highest value allowed to appear in the slabs is the 
original interface value at t,, According to condition (101) the distribution would have become 
flat and the slope in slab ([-1, &,) would be slightly reduced. 

these values rather than just save their differences, computed in Eqs. (88)-(90). We 
first apply the limiter (lOl), keeping track of where it actually limits dQ. Only in 
those places we also try out the narrow-base limiter 

min(2 j Qill - Qi+l/Z 1, / Qi+l - Qi 1, 

(3 IvWQ)~~,,~ z 
2 ) Qi+llz _ Qi i} sgn(Qi-bl - Qi) 

if sgn(Qifl - fji+l/Z) = sgn(p+l/z - Qi) =-_ sgn(Qi+l - Qi), 

0 otherwise, 
(104) 

which will yield the same limiting as (101) near a plateau but weaker limiting near a 
peak; see Fig. 5. If indeed (104) yields the weaker limiting, the value of dQ given by 
(104) is adopted. 

While slope limiting is a powerful tool in achieving monotonicity or positivity, there 
are circumstances when additional measures must be taken. For instance, the internal 
energy P in a slab may become negative as a consequence of its smallness with respect 
to the total energy E or to a negative source term (Gj dt. Such errors can always be 
avoided, although not most efficiently, by reducing the time step. If the danger of 
negativity is limited to a few zones, the time step need only be reduced locally, re- 
quiring multiple time steps in the danger area. A discussion of such techniques, which 
are not specific for MUSCL, falls outside the scope of this paper. 

3.4. Time Splitting 

The multi-dimensional Eulerian flow equations, formulated on the basis of an 
orthogonal coordinate system, may be approximated with second-order accuracy by 
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applying the one-dimensional Eulerian scheme in alternating directions according to 
the well-known time-splitting algorithm of Strang [6]. The method of time-splitting 
has become popular in fluid dynamics mainly because it makes our knowledge of one- 
dimensional schemes directly applicable to the multi-dimensional case. The decom- 
position of a multi-dimensional numerical operator into one-dimensional components, 
however practical, makes it difficult to satisfy intrinsically multi-dimensional conserva- 
tion rules, e.g., irrotationality. Particularly in incompressible flow the results of time- 
splitting are not always satisfactory; see e.g. Fromm [20]. A discussion of the pros and 
cons of time-splitting seems not appropriate here. 

The number of independent state quantities to be integrated by the n-dimensional 
second-order method is (n + l)(n + 2), of which n + 2 are the slab averages of I’, 
E and n velocity components, and n(n + 2) are the first moments of each of the n + 2 
state quantities in n directions. When doing a sweep in one direction, the velocities and 
the derivatives in the other directions play no role in computing the interaction of 
slabs. In the Lagrangean step they remain unaffected while in the Eulerian remap step 
their distributions along the sweep axis are remapped as usual. 

For example, suppose that there is a second dimension with space coordinate y, 
volume coordinate Y, mass coordinate 7 and velocity v. In each Eulerian zone are 
given t’, a+ and JV-,v. When doing a Lagrangean step in the x-direction, these values 
do not change; when remapping, the piecewise linear distribution of v over 4 yields 
new values of v and Jcv in an Eulerian zone just as in the example of Sec. 3.2. (see 
Fig. 2a). The piecewise constdnt distribution of &,v over [ is averaged to yield the 
new value of J,,v in an Eulerian zone (see Fig. 2b). 

For the mass coordinate ti in the x-direction of some Eulerian zone stretching from 
yj to Y,+~ in the y-direction, the mass accumulated between yi and yj+l up to xi may be 
taken. The mass coordinates yj are defined similarly. When sweeping in one direction, 
the mass coordinates in the orthogonal direction are affected. They need not be 
remapped as the other quantities, but may be reconstructed during the next sweep in 
the orthogonal direction. See, however, the remark concluding Sec. 3.2. 

Multi-dimensional boundary conditions that must be applied to surfaces not 
orthogonal to any of the coordinate axes may be decomposed into a sequence of one- 
dimensional orthogonal boundary conditions just as done in the SLIC method 
(Simple Lagrangean Interface Calculation) of Noh and Woodward [7] for the 
boundaries between different fluids. A refinement of that method has recently been 
formulated by Woodward [8], with particular reference to the physics of slab inter- 
action included in the present second-order scheme. 

4. NUMERICAL EXAMPLES 

To illustrate the performance of the method described previously, some one- and 
two-dimensional results obtained with the MUSCL code are shown in Figs. 6-l 1. 

Fig. 6 shows the results of an application of the method to the same one-dimen- 
sional shock tube problem as Sod [IS] used for testing twelve schemes and combina- 
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00 ' ' 2 ' 1 ' ' ' ' ' ' ' ' 
025 050 075 x 025 050 075 x 

FIG. 6. Exact solution (line) and cell averages (circles) of p, U, p and e obtained with MUSCL 
(Eulerian) for the same exploding diaphragm problem as used by Sod [18]. Initial values: u = 0; 
p = p = 1 for x < 0.5; p = 0.125,~ = 0.1 for x > 0.5; y = 1.4. Courant number 0.9; Ax = 0.01. 
Output after 34 time steps at t = 0.14154. 
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tions of schemes. The tube extends from x = 0 to x = 1 and is divided in 100 com- 
putational cells. The gas is initially at rest, while at x = 0.5 the density and the pres- 
sure jump down a factor 8 and a factor 10, respectively. Numerical and exact solutions 
for p, u, p and e are displayed at the time that the shockwave moving to the right has 
approximately reached x = 0.75. The figure allows direct comparison with Sod’s 
figures and indicates that the present method is superior to all methods tested by Sod, 
including Phoenical SHASTA [3]. The latter scheme, however, was used with too high 
a value of the Courant number, so that monotonicity was not preserved. 

For this lOO-cell one-dimensional flow problem the CPU time required for ad- 
vancing one time step with MUSCL on the IBM 370/l 58 of Leiden University (MVS 
operating system) was 0.47 seconds, corresponding to 0.17 seconds on the CDC 6600 
(SCOPE 3.4 operating system) of the Energy Center of the Netherlands in Petten. 
These numbers do not include calls to plotting routines and therefore can not directly 
be compared to the running times given by Sod, which are substantially larger. 
Furthermore, Sod’s coding of the various schemes may not have been optimized. 

Figs. 7, 8,9 and IO show some two-dimensional results obtained with MUSCL by 
P. Woodward at Leiden Observatory. Drawn are pressure contours for flow at 
Mach 3 through a tunnel with a step, in the case of plane symmetry. At t = 0 the 
flow is impulsively started everywhere in the tunnel; across the left-hand boundary 
inflow at Mach 3 persists (u-, = 3, c_, = l), while across the right-hand boundary 
free outflow is prescribed. The height of the step is one fifth the entrance height H of 
the tunnel, while the length of the narrow part of the tunnel is 2.4 times the entrance 
width. 

The pictures 7-9 show the flow after about 4 vertical sound-crossing times H/c-, 
for grids with different mesh sizes. In all cases the meshes are square and the timestep 
used was 90 oh of the maximum allowed by condition (99). Fig. 7 gives the most 
detail, with H covered by 20 meshes, while in Fig. 8 H is covered by 10 meshes. 

Fig. 9 shows what MUSCL achieves when the tunnel entrance is only 5 meshes high 
and the step, therefore, only one mesh. The Mach stem still appears to be visible; 
however, it is an artifact due to the monotonicity algorithms (101) and (102) which 
force pressure contours to be perpendicular to a reflecting wall (see the conclusion of 
Sec. 3.3). The performance on a grid this coarse could be substantially improved 
through the use of the narrow-base monotonicity criterion (104). 

The results in Figs. 7-9 are far from stationary. The steady flow pattern, obtained 
after 16 vertical sound-crossing times with a grid of 45 x 15 meshes, is shown in 
Fig. 10. 

The remaining Fig. 11 shows the results of Godunov’s method, approximately 
realized in MUSCL by setting all slopes equal to zero through an over-restrictive 
monotonicity condition (see Sec. 3.3). These results for H/dy = 30 are mimicked by 
the second-order MUSCL scheme with H/dy = 10 (Fig. 8). This means a dramatic 
increase in efficiency when going to second order, since Godunov’s method, even 
when programmed efficiently, will not run more than twice as fast as MUSCL. 

The execution speed of MUSCL appears to be quite satisfactory. For the 1008-cell 
grid of Fig. 7, a time step on the IBM 370/158 with MUSCL requires 8.78 seconds, 
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or 2.33 times as much as the ALFVEN code [9], developed by W. J. Weber of Utrecht 
Observatory on the basis of Phoenical SHASTA [3]. The latter code, however, must 
run at values of the sonic and convective Courant numbers not greater than one half, 
so that MUSCL ends up being 15-20 o/0 slower than ALFVEN in absolute time 
advancement. The difference of a factor 2 to 3 in CPU time between a MUSCL step 
and an ALFVEN step is readily explained by the fact that in a two-dimensional 
calculation, with the MUSCL code three times as many independent state quantities 
are updated as with the ALFVEN code. The above lambda-shock problem has not 
yet been run satisfactorily with ALFVEN, but a linear error analysis and the com- 
parative shock-tube test give no reason to believe that ALFVEN would be more 
accurate than MUSCL. 

Recently, Boris and Book formulated a low-phase-error SHASTA-like algorithm, 
explicit FCT-LPE [lo], that may be more accurate and efficient than the present 
version of MUSCL. As mentioned earlier, in MUSCL there is room for improvement, 
too. Provisional results obtained by Woodward 1161, using least-squares fitting of 
slopes and the slope limiter (104) in the Lagrangean step, show a dramatic increase in 
accuracy for coarse grids. A comparison between the latest version of MUSCL and 
other codes has been projected. 

In conclusion, the present method for ICF appears to be at least as efficient as 
other good second-order methods. Those already addicted to Godunov’s first-order 
method may welcome the second-order method as an extension with greatly increased 
efficiency. 

5. CONCLUSIONS AND DESIDERATA 

The integration scheme for the equations of ideal compressible flow presented in 
this fifth installment of the series “Towards the Ultimate Conservative Difference 
Scheme” combines the ideas developed in the foregoing instalments. 

The goal of the work reported in the series was convection of vorticity actually is 
the simplest upstream-centered second-order convection scheme. Fromm’s scheme 
was regarded by me as a good candidate for conversion into a conservative scheme 
for ICF. But first the matter of numerical oscillations had to be settled. 

In the first installment [12] the basic technique for preserving monotonicity during 
one-dimensional convection was developed on the basis of the Lax-Wendroff scheme. 
When made monotonic, the latter scheme loses the conservation form: it involves too 
few (three) initial values to combine monotonicity and conservation. Fromm’s 
scheme, based on four initial values in an upstream-centered sequence of nodal points, 
offers the freedom to achieve this desirable combination. This was shown in the 
second installment [13]. As explained in the third installment [5], the conversion of 
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Fromm’s convection scheme into a scheme for ICF offers serious problems, in par- 
ticular because of the upstream centering. 

The solution to these problems was to follow Godunov’s [l] way of turning the 
first-order upstream convection scheme (used before by Courant, Isaacson and Rees 
[14] for the characteristic equations of ICF) into a conservative scheme for ICF. 
Godunov uses the control-volume formulation to ensure conservation and therefore 
works with slab-averaged values of state quantities, rather than with nodal-point 
values. When reformulating Fromm’s convection scheme for a control volume it 
turned out that the scheme could be greatly improved if, in addition to the slab 
averages, independent slab-averaged gradient values are used to represent the distribu- 
tion of the convected quantity. The monotonicity algorithm derived in [5] boils down 
to a prescription for limiting these gradients. This was reported in the fourth install- 
ment [2]. 

In the present installment, the upstream-centered convection schemes from [2] are 
forged into the method in two places. In the Lagrangean step, the interaction of gas 
slabs at their interface is calculated by inserting upstream-centered information into 
the characteristic equations. This has the effect of convecting the Riemann invariants 
J* along the characteristics IQ with an upstream-centered scheme. Furthermore, in 
the Eulerian remap step, Eulerian results are obtained from the Lagrangean results by 
convecting the Lagrangean distribution through the Eulerian grid with aid of another 
upstream-centered scheme. Note that the latter approach differs from Godunov’s [4], 
where the Eulerian equations are approximated in a single step with an upstream- 
centered scheme. 

The various monotonicity algorithms from [2] also find their place in both the 
Lagrangean and the Eulerian step. 

Having been climbing up, five installments long, towards the ultimate conservative 
scheme (which must be regarded as a symbol of man’s never-ending striving for per- 
fection rather than one particular method waiting for its discovery), I feel like having 
reached a plateau wide enough to allow a good stretch. The plateau may be widened 
by removing some already loose rocks: barriers that stand in the way of improvement 
of the accuracy and the efficiency of the method. Some desirable improvements are 
the implementation of least-squares fitting of the distributions at the end of the 
Lagrangean step, of a monotonicity algorithm that clips peaks less strongly, and of 
approximate adiabats in the calculation of slab interactions, useful for an arbitrary 
equation of state. 

The surroundings of the plateau invite some interesting small excursions, for 
instance, to the domain of shallow-water flow. The lowest order shallow-water 
equations have the same form as those used presently, with p - P2 and the energy 
equation missing, and are easily incorporated in the method. 

A major excursion would be the implementation of the method for ideal compres- 
sible magneto-hydrodynamics. This would require a full reconsideration of the slab 
interaction problem and a rederivation of the associated formulas. It is the price we 
have to pay for including in the method more of the physical content of the under- 
lying equations than just their conservation form. 
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APPENDIX A: NUMERICAL RESOLUTION OF A FLOW DISCONTINUITY 

How to resolve an arbitrary flow discontinuity is illustrated in Figures Al, A2 and 
A3, which are diagrams of pressure versus velocity. In Figure Al are indicated the 
initial states I_ = (u- , p-) and 1, = (u, , p+) and the two curves d and &+ represen- 
ting all states that can be reached from I- and 1, through a rarefaction wave or a 
shock wave. The waves generating SL move to the left, those generating SS’+ move to 
the right. The rarefaction branch (Poisson adiabat) and the shock branch (Hugoniot 
curve or shock adiabat) of such curves have different equations, corresponding to the 
different expressions (34~) and (31~) for the wave speeds. As follows from Eq. (29, 
the wave speeds - W_ and W+ appear in the diagram as the slopes of the chords 
drawn from I- and I+ to the points representing the respective post-wave states. In 
the weak-wave limit, these chords become the tangents to L& and s4+ at I+ and I- ; 
the absolute values of their slopes are the initial sound speeds C_ and C, . The inter- 
section point of the curves represents the resolved state R = (u*, p*). In Figure Al 
this state results from a rarefaction wave facing left and a shock wave facing right. For 
an extensive discussion of such diagrams see e.g. Courant and Friedrichs [ 151. 

U 

FIG. Al. Resolution of an flow discontinuity, as represented in the (u,p) plane. The resolution 
involves a rarefaction wave moving to the left and a shock wave moving to the right. 

The equations of the adiabats are too complicated to allow explicit evaluation of 
U* andp*. The iterative procedure for finding R indicated by Godunov [I] is illustrated 
in Figure A2, for the case of two shock waves. As a first guess for p* we may adopt 
the pressure value from the state R(l) = (u*(l), p*(l)) that is found by intersecting the 
tangents to J$ and s4+ at I- and Z+ . Algebraicly it is given by Eq. (60). 

Next, p*(l) is inserted into the appropriate formula (either (34~) or (31~)) to yield 
W’l’ and WY’. In the picture this is indicated by drawing the chords from I- and I+ to 
the points R!? and Ry’ on J$ and &+ where the pressure equals p*(l); the associated 

581/32/1-IO 
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FIG. A2. Godunov’s iterative method of resolving a flow discontinuity, illustrated in the (u, p) 
plane. Double shock case. 

velocities are called u!(~) and u*(l) Intersecting those chords yields the second estimate . 
P*(~), the algebraic value of which is found by inserting Wl” and WF’ into Eq. (59). 
The iterations are continued till the desired accuracy is reached; then U* follows from 
inserting the latest wave-speed value into Eq. (61). 

Godunov’s procedure reduces the difference between the iterated and exact pressure 
values by a factor O{(u+ - U-), (p+ - p_)} per iteration cycle. P. J. Bedijn of Leiden 
Observatory suggested a more efficient procedure, advancing a factor O{(u+ - zQ2, 
(p, - p_)“} in accuracy per iteration cycle; this is illustrated in Figure A3 for the case 
of two rarefaction waves. Instead of intersecting chords drawn from 1~ to Rr’ to 

r 

FIG. A3. A second-order iteration method of resolving a flow discontinuity, illustrated in the 
(u,p) plane. Double rarefaction case. 
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arrive at R(“+l), we intersect the tangents to s?* in the points Rtn). The equation for 
p*cn+l) becomes 

P *(n-rl) = p*(n, _ p)ZyU*(‘l) _ u*‘“‘)/(zy’ + z(n)), 
+ :~ - (Al) 

where Z?’ and Zy’ are the absolute values of the tangent slopes. The faster con- 
vergence is achieved at a minor extra expense of computing time. The tangent slope 
value namely is a byproduct of the wave speed calculation; on a curve .cZ through the 
initial state (u, p) we have 

dpp* ____ 
I 2W” w 

i--i i 

_ W” .+ c2 if p* > p, 
hl* .rl 

(.Q4 
c* = c(p"/p)l-'Y-l)pv) if p* < p. 

When calculating the wave speeds Wp’, which are needed to obtain u‘$(“’ from 
Eqs. (58) and (57), the tangent slopes Zy) can be evaluated from the intermediate 
results; in particular, no extra square root or exponentiation is involved. Once p* has 
been obtained with sufficient accuracy, U* follows from the latest values of uz and Z* 
through 

u* = (Z-UT + Z+lq)/(Z- + Z,). (A3) 

A pressure value resulting from the intersection of chords or tangents, in particular 

P *(l), may become negative if U+ > ZL . The pressure value must therefore be limited 
downward by the smallest value pmrn that is significant for the flow considered. If and 
only if p *G) is negative again, the exact solution would involve cavitation and p* can 
be left at pmin (see Fig. A4). For U* we may take u*(~). 

“Ill u’il u 

FIG. A4. Failure of the second-order resolution method in case the flow cavitates. 
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APPENDIX B: UPDATING SLOPES 

In the previous paper [2] of the present series, three ways of updating a slope were 
presented, namely, conventional finite differencing, interface differencing and least- 
squares fitting. Following the first way, a slope value is obtained by centrally differen- 
cing the average values in the adjacent slabs; in a uniform grid we have 

(W 
Such a value need not be stored along with the slab averages. 

The second way, differencing interface values, has been followed in the Lagrangean 
step (Sets. 2.2, 2.4) while the third way, basing the slope value on the first moment of 
the distribution, has been followed in the Eulerian remap step. Both techniques 
require separate storage of the slope value. 

A linear analysis of the present method, given in [2], shows that the moment- 
fitting technique of Section 3.1 (represented by scheme III in [2]) is vastly superior to 
the other finite-difference techniques: its evolutionary convective error is the smallest 
by two orders of d[. Interface-value differencing (scheme II) and slab-average dif- 
ferencing (scheme I) have equal convection errors (for At/& + 0), whereas the 
maximum dissipative error per time step in the former is a factor 3 smaller than in the 
latter, but still a factor 3 larger than for moment-fitting. 

A peculiarity of interface-value differencing is that it can drastically change the 
slope value over a vanishingly small time step. For example, a shock wave barely 
penetrating into a uniform slab will raise all slope values in that slab from zero to the 
jump values divided by Ot. The effect can be offset by application of a monotonicity 
algorithm, which is recommended anyway (see Fig. 5a). 

Slab-average differencing has the inherent disadvantage of involving data from 
neighbouring slabs. This, of course, is the cause of its larger dissipation error; it also 
leads to extra errors if the difference is taken across a strong contact discontinuity or a 
point where the mesh is suddenly refined a factor O(1). These extra errors also occur 
in Godunov’s method [l, Set 71. The main advantage of differencing slab averages is 
a reduction in computer storage space, as compared to the requirements of the other 
ways of evaluating a slope. 

With slab-average differencing, the scheme for convecting the Riemann invariants, 
underlying the present method, boils down to the upstream-centered second-order 
scheme of Fromm [12], just as Godunov’s method boils down to the upstream- 
centered first-order scheme of Courant, Isaacson and Rees [I 51. 

For those who appreciate the simplicity of determining slopes by slab-average 
differencing, it is useful to know there is a way of doing this so that the crudest 
monotonicity condition is automatically accounted for. As indicated in [2, Eq. (67)], 
in a uniform grid one simply has to determine Ji+l,ZQ by harmonically averaging 
d+Q and O,+,Q, rather than algebraically: 

if sgn OiQ = sgn A,+,Q, 

otherwise. 
032) 
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In the Eularian remap there is no excuse for not using the least-squares formula. Tn 
the Lagrangean step, however, least-squares fitting offers serious problems.To illustrate 
these, let us multiply Eq. (1) by (5 - 5) and integrate it over one Lagrangean zone 
and one time step; this leads to a formula for updating dk’: 

<f (Lli+li2@- (iw12V - ditl,2V) + Lli+1,2[(Xi’l~2 - xf,1,2) 

- ; At Ll~+,,2‘$((X~U;, l- (x”u)&l) = 0, (B3) 

Or 

&+1/z v = J i+1,2V + 6(4t/di+~i25)[(~“~>i + (x”u>,+, - 2(x”u)i,1/2] = 0. (B4) 

The term between square brackets is of the order 0{(4&} and can not be calculated 
adequately without knowledge of the second time derivative of u at the interfaces. If 
we leave an error 

@lt)2 {a2(x”u)/ab2}i,i+l 
in <xaU)i,i+l , as in Eq. (69), but, likewise, an error 

:;(ot)2{a2(x~u)/at2)i, 112 

in (xw)~+~,~, the errors of the order O((dt)2) in the bracketed term cancel and the 
resulting formula for updating dV is perfectly valid. However, it does not reduce to 
the exact least-squares formula in the case of constant coefficients; in fact, it does not 
even lead to an upstream-centered scheme. In consequence, it even yields larger phase 
errors than interface differencing. The numerical results of Sec. 4 were still obtained 
with dV updated according to (B4). 

The most promising way to introduce least-squares fitting into the Lagrangean 
step seems to be by actual least-squares fitting of the final Lagrangean distribution, in 
some practical approximation. This has not yet been implemented to full satisfaction. 

An alternative way to achieve least-squares accuracy is to start from initial-value 
distributions that are quadratic in each zone and continuous at the interfaces. The 
initial values hence are of the form 

PO", 8 = Qi+1,2 + {<Qi+, - PiM+,,20(t - &+1/2) 

+ 3{(Qi,1 - Zi+ua + QJ/(~i+,/202S{(~ - fi+l,J2 - i%4+1,202$, 

‘5 e 4 e tits,1 . CBS> 

In [2] it was shown that the convective scheme V, based on the above zonewise 
initial-value distribution, has the same dispersive and dissipative evolutionary errors 
as scheme III, with a zonewise linear initial-value distribution obtained by least- 
squares fitting. 

Using the quadratic distribution in the Lagrangean scheme means that the step of 
resolving the initial discontinuity at an interface drops out, while the formulas for the 
first time derivatives at an interface ei become the usual characteristic equations (18) 
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and (19). Only in calculating the second time derivative one may (or may not) account 
for the discontinuity of first derivatives across characteristics departing from (to, lj). 

The apparent simplicity, however, is lost when the scheme is made monotonic or 
extended to two dimensions through time splitting. Under those circumstances the 
continuity of the state quantities at the interfaces must be given up. This scheme 
therefore has not yet been implemented for the equations of ICF. 
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